Защитное заземление электроустановок


Как выполнить защитное заземление электроустановок

Рассмотрим общие сведения о заземлении электроустановок. Серьезную опасность представляет прикосновение к нетоковедущим металлическим частям, оказавшимся под напряжением вследствие порчи изоляции.

Неожиданность удара током, может привести к несчастному случаю.

Если прикосновение к токоведущим частям может быть пре­дупреждено ограждением или расположением их на не­доступной высоте, то прикосновение к частям нетокове­дущим, например, корпусам оборудования, неизбежно при всякой эксплуатации. Более того, в ряде случаев это прикосновение является нормальной рабочей операцией. Моторист обязан, например, периодически касаться ру­кой корпуса электродвигателя, чтобы проверить на ощупь степень нагрева его деталей. Работающий с переносным электроинструментом находится в длитель­ном контакте с его корпусом.

Рабочий, обслуживающий станок, электродвигатель которого установлен на одной станине или на одном валу с ним, длительно связан через станок с корпусом электродвигателя и т. п. Про­бой изоляции у такого вида электрооборудования неиз­бежно влечет за собой переход напряжения на корпус двигателя, на инструмент и станок, в результате чего ра­ботник оказывается под воздействием электрического тока.

Неожиданность этого явления и неподготовленность к нему рабочего зачастую приводят к несчастному случаю.

Уменьшение или устранение опасности при переходе напряжения на корпуса и нетоковедущие конструктив­ные детали электрического оборудования достигается одной из следующих мер: защитным заземлением, за­щитным отключением, покрытием нетоковедущих частей изоляцией или изготовлением их из изолирующего ма­териала, применением изолирующих подставок, пониже­нием напряжения и т. д.

Наиболее надежной мерой защиты человека от пере­хода напряжения на нетоковедущие части служит зазем­ление — металлическое соединение с землей нетоковеду­щих металлических частей электрической установки, ко­торые, будучи расположены вблизи токоведущих частей, могут оказаться с ними в соприкосновении.

Защитному заземлению подлежат корпуса электри­ческих машин, трансформаторов, реостатов, контролле­ров, металлические кожухи выключателей, штепселей, каркасы щитов, металлические оболочки кабелей, корпуса муфт, приводы электрической аппаратуры, фермы, колонны и прочие нетоковедущие части электрических установок, которые могут случайно оказаться под напряжением.

В зависимости от напряжения и системы электроснабжающей сети с изолированной или глухозаземленной нейтралью трансформаторов (генераторов) защитное заземление выполняют по-разному (рис. 1).

Рисунок 1. а)сеть с изолированной нейтралью, б)сеть с глухозаземленной нейтралью.

Защитное заземление в установках с изолированной нейтралью (рис. 1,а) силового трансформатора (генера­тора) осуществляют соединением с землей нетоковеду­щих частей установок, которые могут оказаться под на­пряжением при нарушении изоляции и к которым воз­можно прикосновение людей.

Создавая между корпусом и землей металлическое соединение большой проводимости, достигают того, что ток, проходящий через тело человека, включенное па­раллельно этому соединению, становится неопасным.

В сети с глухим заземлением нейтрали (рис. 1,б) си­лового трансформатора (генератора) для заземления соединяют нетоковедущие части установок с заземлен­ным нулевым проводом. В таких установках заземление служит для надежного и быстрого автоматического от­ключения установки при замыканиях на корпус повреж­денных участков сети.

При замыкании на корпус электродвигателя про­изойдет короткое замыкание между поврежденной фазой и нулевым заземленным проводом, в цепи возникнет ток короткого замыкания, и поврежденное оборудование ав­томатически отключится от сети, так как сгорят предо­хранители или отключится автомат.

Для быстрого и надежного отключения поврежден­ного участка ток короткого замыкания должен превы­шать не менее чем в три раза номинальный ток плавкой вставки предохранителя или в полтора раза ток уставки ближайшего автоматического выключателя.

Поделитесь полезной статьей:

fazaa.ru

41. Защитное заземление электроустановок: устройство, принцип расчета.

При прикосновении человека к оказавшимся под напряжением (при коротком замыкании, пробое изоляции) металлическим нетоковедущим частям электрооборудования может произойти поражение его электрическим током.

Для предотвращения этого широко применяется защитное заземление – преднамеренное электрическое соединение с землей металлических нетоковедущих частей, которые могут оказаться под напряжением. Задача защитного заземления – снизить до безопасной величины потенциалов между корпусом оборудования, к которому прикоснулся человек, и землей, на которой он стоит. Эта разность потенциалов называется напряжением прикосновения. Чем меньше напряжение прикосновения, тем меньший ток будет протекать через человека. Защитное заземление применяется в сетях напряжением до 1000 В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали. Величина максимально допустимого сопротивления заземления электроустановок Rдопрегламентируется Правилами устройства электроустановок в зависимости от мощности источника электроснабжения и составляет 10 Ом для источников мощностью 100 кВА и менее 4 Ом во всех остальных случаях.

Эти значения выбраны с таким расчетом, чтобы при попадании напряжения на металлические нетоковедущие части электроустановки и прикосновения к ним человека ток через него не превышал 6 мА, т.е. был меньше неотпускаемого.

Конструктивно заземление выполняется в виде нескольких стержневых заземлителей, погруженных в грунт на определенную глубину и соединенных параллельно полосой связи. Такая система применяется потому, что одиночный заземлитель, как правило, имеет сопротивление значительно большее чем Rдоп.

Сопротивление заземления в большей мере зависит от удельного сопротивления грунта ρ, ом*м.

Удельное сопротивление грунта – сопротивление 1 м3грунта, к противоположным граням которого приложены измерительные электроды. Удельное сопротивление грунта зависит от вида почвы (глина, песок, чернозем) и времени года. Наибольшую величину оно имеет зимой в северных районах при промерзании почвы и в июле в южных районах, когда почва наиболее сухая.

Сопротивление заземления необходимо периодически, не реже 1 раза в год, контролировать, так из-за коррозии заземлителей или их механических повреждений оно может превысить допустимую величину.

Рассчитывают заземляющее устройство в таком порядке:

1. Определяют допустимое сопротивление заземляющего устройства в зависимости от рода установки.

2. Находят расчетное значение удельного сопротивления грунта в месте устройства заземления с учетом повышающего коэфф-та k, ρрасч=k*ρ

3. подсчитывают сопротивление растеканию тока одного заземлителя (трубы или угловой стали) по формуле: ,

где l– длина заземлителя находящаяся в земле, м

d– внешний диаметр заземлителя (0,025-0,03 м)

t- глубина заложения, равная расстоянию от поверхности земли до середины заземлителя.

Если используется угловая сталь dУГ=0,95*bУГ,bУГ- ширина уголка (0,04-0,06м).

Сопротивление растеканию тока одного заземлителя в виде круглого стержня, заглубленного вертикально вровень с землей, определяют по формуле

4. приняв схему расположения заземлитеолей (в ряд, по замкнутому контуру), находят приближенное число заземлителей . Коэф-том использования уточняют количество заземлителей

5. Определяют длину соединительной полосы между заземлителями.

lП=a(nз-1) - в ряд

lП=a*nз - по контуру

6. Рассчитывают сопротивление растеканию тока соединительных полос

studfiles.net

3.2 Защитное заземление

Заземлением называют преднамеренное соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством. По назначению различают два вида заземлений: рабочее и защитное.

Рабочим (функциональным) заземлениемназывается заземление точки или точек токоведущих частей электроустановки, (например, нейтраль трансформатора) выполненное для обеспечения ее работы.

Защитным заземлениемназывается заземление открытых проводящих частей (металлических частей электроустановки) с целью обеспечения электробезопасности. Как правило, защитное заземление применяется в сетях с изолированной нейтралью (см. рис. П. 5.4), а также может применяться в сетях с глухозаземленной нейтралью (см. рис. П. 5.5). Основной принцип защиты состоит в том, что при возникновении опасности поражения электрическим током через защитное заземление (Rзз) создается параллельный человеку путь тока.

Рисунок 3.2 – Принципиальная схема защитного заземления

Так как сопротивление тела человека (без учета сопротивления обуви и растекания с ног человека) составляет 1000 Ом, а сопротивление защитного заземления существенно меньше (допустимые значения сопротивления заземляющих устройств представлены в приложении 5), то значительная доля тока будет протекать через защитное заземление (Iзз) и малая часть человека (Ih). В этом случае ток через человека в принципе может не превышать принятых критериев электробезопасности.

Численные значения сопротивлений защитных заземлений устанавливают ПУЭ (7-е издание) зависимости от режима нейтрали, уровня напряжения электроустановки и удельного сопротивления грунта.

Измерение сопротивления заземляющего устройства производится после монтажа, переустройства и капитального ремонта этих устройств в периоды наибольшего высыхания грунта (зимой – в морозные дни; летом – в сухие дни).

Измерения напряжения прикосновения также должны производиться после монтажа, переустройства и капитального ремонта заземляющего устройства, но не реже 1 раза в 6 лет.

На каждое находящееся в эксплуатации заземляющее устройство должны иметься паспорт, содержащий схему устройства; основные технические данные; данные о результатах проверки и его состояния; о характере ремонтов и изменениях, внесенных в конструкцию данного устройства. Открыто проложенные заземляющие проводники должны быть предохранены от коррозии и окрашены в черный цвет.

3.3 Защитное зануление

Защитное зануление в электроустановках до 1 кВ - преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью источника электроснабжения, выполняемое в целях электробезопасности. Принципиальная схема защитного зануления приведена на рис.3.2.

Рисунок 3.3 - Принципиальная схема зануления

1 - сопротивление заземления нейтрали трансформатора, 2 - металлический корпус электро-установки, П - аппараты защиты от токов короткого замыкания (предохранители), IКЗ - ток короткого замыкания

Защитные свойства зануления проявляются в том, чтобы любое замыкание на корпус превратить в однофазное короткое замыкание (КЗ) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную электроустановку от питающей сети. Таким образом, принципиальное отличие защитного зануления от защитного заземления состоит в том, что при защитном занулении ограничивается время существования опасности поражения электрическим током. От начала нарастания тока короткого замыкания до автоматического отключения потенциально опасной электроустановки проходит десятые доли секунды. В качестве аппаратов защиты электрических сетей напряжением до 1 кВ используются автоматические выключатели или плавкие предохранители. Надежное отключение поврежденной электроустановки обеспечивается, если ток короткого замыкания превосходит не менее чем в 3 раза номинальный ток плавкой вставки предохранителя. Отсюда диктуется запрет на самодельное изготовление плавких вставок. Для проверки соответствия тока плавления предохранителей или уставок расцепителей автоматических выключателей току короткого замыкания в электроустановках потребителей периодически должно проводиться измерение полного сопротивления петли тока КЗ с помощью специальных приборов. Сроки измерений совпадают с межремонтными испытаниями и измерениями параметров, а также при капитальном и текущем ремонтах, но не реже 1 раза в 6 лет.

studfiles.net


Смотрите также